Tag Archives: GP5

Variable Partition Truth Assignment

We’re going to dive into a couple of logic games for the next couple of posts before we come out with I think of as more “game-like” games.

The problem: Variable Partition Truth Assignment.  This is problem GP5 in the appendix.

The description: Given a set U of variables, and a set C of clauses over U, players play a game where they alternate choosing variables from U.  The variables Player 1 chooses will be set true, and the variables Player 2 chooses will be set to false.  Player 1 wins if all clauses in C are satisfied.  Can player 1 force a win?

Example: Here is a small example: The clauses will be: {(x1 ∨ x2 ∨ x3), (~x1 ∨~x2∨ ~x3), (~x4, x1, ~x2)}

Player 1 can force a win by choosing x1, which will be set to true.  This satisfies both clauses 1 and 3.  Player 2 does not want to choose x2 or x3 (since any variable player 2 chooses will be set to false, making clause 2 true), so they’ll choose x4.  Then player 1 picks either of x2 or x3 (clause 2 is still not satisfied, because the variable must be set to true by player 1), then player 2 must set the other one to false, satisfying clause 2.

Reduction: The paper by Schaefer that we’ve been going through calls this “GPOS (POS CNF)” and focuses on the subcase where we’re given a formula where all of the variables are positive.  If even that case is NP-Complete, then the generalized case where we allow negated literals is also NP-Complete.  The reduction in the paper is from Sequential Truth Assignment, specifically the case where the problem has 3 variables per clause.  So we’re given an input that is a set of 2n variables, which we can view as alternating between ∃ and ∀, and a set of m clauses with at most 3 literals per clause.  We’re going to build a new formula A’ out of many pieces.  The variables are all positive, but some of the variable names will correspond to negated literals.  We’ll have 2n “x” variables, 2n “~x” variables, and 2n “u” variables.  He then builds up a pretty crazy formula.  The point of the formula is to force a 6-move sequence between the players:

  • On move 6k+1 (so the first move of “round” k), player 1 chooses either x2n-2k or ~x2n-2k to become true.
  • The next move, player 2 chooses the other of that pair to become false.
  • The next move, player 1 chooses u2n-2k to become true
  • On moves 6k+4 through 6k+6, we repeat the same sequence, but this time, player 2 can choose whether to make x2n-2k-1 or ~x2n-2k-1 false.  Then we end with player 2 choosing u2n-2k-1 to become false.

Notice how each set of 3 moves corresponds to one truth assignment of one variable in the Sequential Truth Assignment game (which alternates between player 1 and player 2 choosing the assignment).  Also, notice how player 1 choosing a variable xi corresponds to setting it true in the Sequential Truth Assignment game, and player 1 choosing a ~xi variable to be set to true corresponds to making the corresponding Sequential Truth Assignment variable false. (The opposite assignments occur when player 2 chooses)

The hard part of the proof (and of the formula) involves all of the various ways the other player can force a win if the sequence above is not followed.

Difficulty: 9.  The formula in the paper is very hard to follow, which is why I didn’t go into it here- I think the important part is how it all works out.  Since I couldn’t think of a way to explain it without going on for pages, I figured just explaining the idea was a better strategy.