# Category Archives: Appendix- Games and Puzzles

## Generalized Instant Insanity

The last problem in the “Games and Puzzles” section comes from a commercial puzzle (though one based on a much older puzzle).  It’s cool how these sorts of things pop up- a toy or game comes out and then people analyze it mathematically and find some neat features about it.

The problem: Generalized Instant Insanity.  This is problem GP15 in the appendix.

The description: Given a set Q of cubes, and a set C of colors we paint on the sides of each cube (and where |Q| = |C|) is there a way to arrange the cubes in a stack such that each color in C appears exactly once on each side?

Example: The Wikipedia page for the Instant Insanity game has a good description of the game and an example of the solution when Q = 4.

Reduction: Roberson and Munro reduce from “Exact Cover”.  I don’t think I’ve done this problem, but it’s basically X3C where the sizes of the sets can be any size.  (So it’s a trivial reduction from X3C).

They start by designing a graph representation of the puzzle, similar to the one shown on the Wikipedia page. Vertices correspond to colors, an edge connects two vertices if they are on opposite sides of the came cube, and the edges are labeled with the name of the cube.  The puzzle has a solution if and only if we can find two edge disjoint cycles that touch each vertex and edge label exactly once.  The two cycles correspond to the two sets of opposite faces we can see (since 2 sides of each cube are hidden by the stack).  Again, go look at the graphs in the Wikipedia article– they show this pretty nicely.

So, to perform the reduction, we’re given a set S {s1..sm} and a collection T of subsets of S, and need to make a graph (which corresponds to a puzzle).  Each element in S will become a vertex in the graph.  Each of these vertices will have a self-loop and be labeled ζi (So each vertex is a different color, and each self-loop is part of a different cube- so each cube has one color on opposite sides).

Each element si inside a set Th of T will also have a vertex: vi,h. This vertex has an edge with the next largest level sj within Th, wrapping around if we’re at the last element of Th. These edges are labeled ϒh,j.  We also have an edge from sjto vh,j if sj is in Th labeled with δh,j.  We also have 2 copies of self-loops from each vh,j to itself labeled ϒh,j.

They then add some extra edges to give the graph the properties:

• One of the self-loops from vh,i to itself has to be in one of the two cycle sets.
• If the edge from vh,i to sj (labeled ϒh,j) is in the other cycle set, then the edge from sj to vh,j (labeled δh,j) is also in that cycle set
• The ζi edge label has to be used, and so will have to be used on an si vertex the cycle that uses that vertex will also have to have the labels ϒh,j and δh,j for some h.
• The loops (labeled ζj and ϒh,j) are in one cycle set and the paths (labeled ϒh,j and δh,j) are in the other.

With these properties, then solving the puzzle means we have to find h1 through hm that correspond to sets Th in T, but also where there is a path ϒh,jh,j in the graph for each sj in Th_i.  We make sure no elements in S are repeated by making sure the puzzle only uses each sj vertex once.

Difficulty: 8.  I glossed over a lot of the construction, especially the definition of a “p-selector”, which is a subgraph that helps set up a lot of the properties above.  That definition is very hard for me to follow.

## Crossword Puzzle Construction

Closing in on the end of the section, this is a “private communication” problem that I think I figured out myself.

The problem: Crossword Puzzle Construction.  This is problem GP14 in the appendix.

The description: Given a set W of words (strings over some finite alphabet Σ), and an n x n matrix A, where each element is 0 (or “clear”) or 1 (or “filled”).  Can we fill the 0’s of A with the words in W?  Words can be horizontal or vertical, and can cross just like crossword puzzles do, but each maximally contiguous horizontal or vertical segment of the puzzle has to form a word.

Example: Here’s a small grid.  *’s are 1, dashes are 0:

 * – – – * – – – – – – – – – – * * – – * * * * – *

Suppose our words were: {SEW, BEGIN, EAGLE, S, OLD, SEA, EGGO, WILLS, BE, SEA, NED}.  (Notice the lone “S” is a word.  That’s different from what you’d see in a normal crossword puzzle)

We can fill the puzzle as follows:

 * S E W * B E G I N E A G L E * * O L D * * * S *

Notice that we can’t use the first two letters of “BEGIN” as our “BE”, because the word continues along.  That’s what the “maximally contiguous” part of the definition is saying.

Reduction: From X3C. We’re given a set X with 3q elements, and a collection C of 3-element subsets of X.  We’re going to build a 3q x q puzzle with no black squares. (We’ll get back to making this a square in a minute)  Each word in W will be a bitvectorof length 3q, with a 0 in each position that does not have an element, and a 1 in the positions that do.  So, if X was {1,2,3,4,5,6,7,8,9} the set {1,3,5} would be 101010000

We also add to A the 3q bitvectors that have exactly one 1 (and 0’s everywhere else). The goal is to find a subset of C across the “rows” of the puzzle, such that the “columns” of the puzzle form one of the bitvectors.  If we can form each of the bitvectors, we have found a solution to X3C.  If we have a solution to X3C, we can use the elements in C’ and place them in the rows of the 3q x q puzzle block to come up with a legal crossword puzzle.

We’re left with 2 additional problems:  The grid needs to be a square, instead of a 3q x q rectangle, and the legal crossword puzzle solution needs to use all of the words in W, not the the ones that give us a C’.  We can solve both by padding the grid with blank squares.  Spaced out through the blank spaces are 1 x 3q sections of empty space surrounded by black squares.  We can put any word in C-C’ in any of these sections, and that’s where we’ll put the words that are not used.

(This also means we’ll have to add 3x|(C’-C)| 1’s and (3q-3)|(C’-C)| 0’s to our word list for all of the 1-length words in those  columns.)  Then we add enough blank spaces around the grid to make it a square.

Difficulty: 5 if I’m right, mainly because of the extra work you have to do at the end.  The comments in G&J say that the problem is NP-Complete “even if all entries in A are 0”, which is usually a hint that the “actual” reduction used an empty square grid.  I wonder if that reduction doesn’t have my hacky stuff at the end.

## Square Tiling

The reference in G&J is to an “unpublished result” (by Garey and Johnson themselves, with Papadimitriou).  I think the solution I found is not the one they are referring to.

The problem: Square Tiling.  This is problem GP13 in the appendix.

The description: Given a set C of colors, and a set T of tiles, where each of the 4 sides of the tile are colors from C (listed as a 4-tuple of (top, right, bottom, left) colors), and an integer N.  Can we tile an NxN square of tiles using tiles from C?  We can use a tile more than once, the tiles can’t be rotated, and adjacent edges need to match colors.

Example: Here are some example tiles I drew: We can tile these into a 3×3 grid like this: Reduction: As I said above, the reference in G&J is to an “unpublished result” by Garey, Johnson, and Papadimitriou.  I did manage to find a “generic reduction” using Turing Machines in the Lewis and Papadimitriou Theory book.

The reduction is from the “N2” language in the book, which (I think) is “Can a Turing Machine M halt in t steps or less with its head on the tape in configration uσv, where u and v are strings in Σ*, and σ is the location of the head (and a symbol in the alphabet)?

The idea is that we’ll build a set of tiles whose colors are based on the number of steps the computation has done so far.  The colors are actually tuples.  So, we have several kinds of tiles:

• For each a in Σ*, and each k from 1 to t, a tile with color (a, k+1) on the top, and (a,k) on the bottom.  This simulates a move that stays in the same state and writes the same symbol.
• For each pair a,b in Σ*, and each state p,q in M (p can include the halt state, q can’t), a tile with the color (p,b,k+1) on the top and (q,a,k) on the bottom.  This simulates going from state p to state q and replacing an a with a b.
• We can transition from one of the above types of tiles to another using a sideways move.  (If the head moves left or right, we move to a tile to the left or right)
• There are special tiles for the start row and for when the machine halts.

We set our N (the size of the tiling grid we’re making) to t+2.  What we’ve built is a system that:

• Has to have the tiles corresponding to one of the start states on the bottom row
• Has in row i a tile corresponding to a configuration of the machine after i steps.  (A path of tiles from the bottom to row i show the computation needed to get to that state)
• Has at the top row a tile corresponding to a configuration after t+1 steps.  If there is a legal tiling, one of those tiles must contain the halt state.

..which they claim is the same as the N2 langauge.

The suggested reduction in the appendix is from Hamiltonian Path, and I spent some time thinking about how to make that work, but couldn’t do it.  Do you make tiles correspond to vertices? Do you make colors correspond to vertices?  How do you account for the fact that you can go in two dimensions?  How do you account for the fact that you don’t know the order in which you visit the tiles?  I think it might be similar to this way of thinking about configurations.

Difficulty: 9 because it’s such a non-standard way of doing things.  I bet the Hamiltonian Path reduction is a lot easier.

## Left-Right Hackenbush for Redwood Furniture

Here’s an interesting problem, but a hard one to explain.  Most of what I’m doing here comes from the very cool “Winning Ways for Your Mathematical Plays” book by Berlekamp, Conway, and Guy, which I hope at some point in the future to have the time to really dig deeply into.  But for now, I’ll just use it as a reference to this week’s problem.

The problem: Left-Right Hackenbush for Redwood Furniture.  This is problem GP12 in the appendix.

The description: Ok, here we go.  First, a Hackenbush problem consists of an undirected, connected graph.  The edges of the graph are marked as “Left” or “Right”(though the book has some very nice colored pictures, where the edges are labeled “Blue” and “Red”).  Some of the vertices are on the ground (In G&J’s definition, there is one ground vertex, but it’s equivalent to having several vertices that are all on the ground).

On Left’s turn, they remove a blue edge and then all edges that are not connected to the ground are removed.  On Right’s turn, they remove a red edge, and then all edges that are not connected to the ground are removed.  A player loses if there are no remaining edges of their color.

redwood furniture Hackenbush instance is one where:

• No red edges touch the ground
• Each blue edge (or “foot”) has one end on the ground and the other touches a unique red edge (the “leg”)

Here are some redwood furniture instances from the book: The “value” of a Hackenbush position is the number of “spare” moves (with optimal play) one player has after the other player loses.  A value of 0 means that whoever’s turn it is will lose (on an empty board).  The definition can be extended to fractional values.  For example, a value of 1/2 for (say) Left means that if we made two copies of the game, we would end up with a situation with a value of 1 for Left.

So, the question is, for some Redwood Furniture graph, and some K, is the value <= 2-K?

Reduction:

I’m just going to sketch the process here since it takes several pages of the book (and depends on results and ideas from earlier in the book).

They show:

• The value of any redwood furniture graph is 2-N for some N.  In the degenerate case, the graph with just one Left edge has a value of 1. (=20)
• On Left’s turn, they will always remove a foot (by definition, that’s all they have).  On Right’s turn, they should make a move that does not disconnect the graph, if possible.
• A “Bed” is a redwood furniture graph where every red edge that is not a leg connects to a leg.  It has value 2-(m+1), where m is the largest number of moves that do not disconnect the bed.
• The value of the game depends on how many extra moves Red has to get down to just a bed.
• To find m, you need to know the size of the largest redwood tree (a tree is a graph that will be disconnected by the removal of any edge) that contains all of the legs.
• The edges of the bed (the red edges that are not legs) form a bipartite graph.  So finding m is equivalent to the set covering problem, where the elements of the set are the vertices, and the edges are the sets.

Here’s how I think the Set Covering reduction works.  Given a set covering instance: a set S of elements, and a collection C of subsets of S, we’ll build a bipartite graph.  One set of the bipartite graph will correspond to the elements of S (and will be on the legs of the furniture graph).  The other set will correspond to the elements in C (and will be the vertices in the bed that are not in the legs).  An edge will go from each “C vertex” to each “S vertex” in its set.  Now, the cover is the set of vertices from the bed that cover all of the legs.

The book says you want the “smallest redwood tree which contains all of the legs”, which I think is the same thing (smallest number of extra vertices), but I’m not 100% confident since the Hackenbush game involves removing edges, and we’re choosing vertices in the cover.

I’m a little sad that the book does such a great job describing the game, and the value function, and then glosses over the reduction part (and uses misleading terms like “Minimum Spanning Tree of a Bipartite Graph”, which is a polynomial problem).  The actual reduction in G&J is to a private communication, so that’s not much help.

Difficulty: Boy, I don’t know, I think it depends on where you start from.  If my Set Cover reduction is the right one, and all you ask a student to do is that, it’s probably a 4.  If you’re going to make them prove all of the things I glossed over about the value number, then it probably goes up to at least an 8.