-
Recent Posts
- Finite Function Generation March 17, 2023
- Reachability for 1-Conservative Petri Nets January 27, 2023
- Non-Liveness of Free Choice Petri Nets January 12, 2023
- Cyclic Ordering December 21, 2022
- Betweenness December 7, 2022
Recent Comments
Archives
- March 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- June 2022
- May 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
Categories
- Algebra and Number Theory
- Appendix- Algebra and Number Theory
- Appendix- Automata and Language Theory
- Appendix- Games and Puzzles
- Appendix- Mathematical Programming
- Appendix- Network Design
- Appendix- Program Optimization
- Appendix- Sets and Partitions
- Appendix-Graph Theory
- Appendix-Logic
- Appendix: Miscellaneous
- Appendix: Sequencing and Scheduling
- Appendix: Storage and Retrieval
- Chapter 3 Exercises
- Core Problems
- Overview
- Problems not in appendix
- Uncategorized
Tag Archives: Clique
Protected: Reynolds Covering for Context-Free Grammars
Enter your password to view comments.
Posted in Appendix- Automata and Language Theory
Tagged AL11, Clique, Difficulty 7, Reynolds Covering for Context-Free Grammars
Protected: Partially Ordered Knapsack
Enter your password to view comments.
Posted in Appendix- Mathematical Programming
Tagged Clique, Difficulty 5, Knapsack, Partially Ordered Knapsack, uncited reduction
Protected: Conjunctive Boolean Query
Enter your password to view comments.
Posted in Appendix: Storage and Retrieval
Tagged Clique, Conjunctive Boolean Query, Conjunctive Query Foldability, Difficulty 3, SR31, uncited reduction
Protected: K-Closure
Enter your password to view comments.
Posted in Appendix-Graph Theory
Tagged Clique, Difficulty 8, GT58, K-Closure, Reductions I needed help with, Weighted K-Closure
Protected: Maximum Subgraph Matching
Enter your password to view comments.
Posted in Appendix-Graph Theory
Tagged Clique, Difficulty 2, Difficulty 5, GT48, GT50, Largest Common Subgraph, Maximum Subgraph Matching, No G&J reference, Subgraph Isomorphism, uncited reduction
Protected: Induced Subgraph with Property π, Induced Connected Subgraph with Property π
Enter your password to view comments.
Posted in Appendix-Graph Theory
Tagged 3-sat, Clique, Difficulty 10, GT21, GT22, Independent Set, Induced Subgraph With Property Pi, Vertex Cover
Protected: Balanced Complete Bipartite Subgraph
Enter your password to view comments.
Posted in Appendix-Graph Theory
Tagged Balanced Complete Bipartite Subgraph, Clique, Difficulty 7, GT24
Protected: Largest Common Subgraph
Enter your password to view comments.
Posted in Chapter 3 Exercises
Tagged Clique, Difficulty 3, GT49, Largest Common Subgraph, No G&J reference, reductions, uncited reduction
Clique
G&J don’t even bother to prove Clique is NP-Complete, just stating that it (and Independent Set) is a “different version” of Vertex Cover. But the problem comes up often enough that it’s worth seeing in its own right.
The problem: Clique (I’ve also seen “Max Clique” or “Clique Decision Problem” (CDP))
The definition: Given a graph G=(V,E), and a positive integer J (G&J say J needs to be ≤ |V|, but I think you can allow large values and make your algorithm just say “no”). Does J contain a subset V’ of V, or size at least J, where every two vertices in V’ are joined by an edge in E?
Example: Using the graph we had for VC:
{a,c,d} form a clique of size 3. There are no cliques of size 4, but if we add the edge (d,g) and the edge (c,h), then the vertices {c,d,g,h} would be one.
The reduction: From Vertex Cover. Given a graph G and an integer K that is an instance of Vertex Cover, take the complement of G (the complement of a graph has the same vertices, but the set of edges is “inverted”: (u,v) is an edge in the complement if and only if it was not an edge in G), and use it as your instance of CDP. Set J= |V|-K
Difficulty: 3. It’s not a 2 because it takes a little thought to see why the complement works.
Note: As stated perviously, I teach this course using the Cormen book, so in class I show Clique is NP-Hard by reducing from 3SAT. It’s a good example of a hard reduction, probably about as hard as the VC reduction G&J do.
Posted in Core Problems
Tagged Clique, core problems, Difficulty 3, reductions, Vertex Cover
Vertex Cover
Back to the “core 6” with a classic problem from graph theory. There are lots of similar graph problems, so it’s important to keep them all straight.
The Problem: Vertex Cover (VC)
The Definition: Given a graph G=(V,E) and a positive integer K (G&J say that K ≤ |V|, but really, if it’s bigger than that, you can have the algorithm just return “yes”). Can I find a subset V’ of V, |V’| ≤ K, where every edge in E has at least one endpoint in V’?
Example: Hmm, I wonder if I can insert an image..
Ok, looks like that worked. In the graph above, {c,d,g} is a vertex cover, because all edges have at least one endpoint in the set {c,d,g}. As we’ll see later, a graph containing a clique (complete subgraph) of N nodes will need at have at least N-1 of those vertices in the cover.
The reduction: From 3SAT. G&J on pages 54-56 show the construction. We build a graph with vertices for all variables and their negation, with an edge between them. We have three variables for each clause, connected in a triangle. (The three variables correspond to “positions” in the clause). Then there is an edge from each vertex corresponding to a literal (or its negation) to its corresponding “clause vertex”- the vertex that holds the position of that variable in the original formula. K= # of variables + 2* number of clauses.
Difficulty: 7 , assuming it’s the first time a student has seen this sort of reduction. If they have seen something similar (for example, a reduction from 3SAT to Clique), then maybe a 5. The ideas are pretty similar.
Note: I teach my algorithms class using the Cormen book. In it, they reduce 3SAT to Clique, proving Clique is NP-Complete, and then reduce Clique to VC. This works in the exact same way as the reduction from VC to Clique that I’ll be doing here next.
Posted in Core Problems
Tagged 3-sat, Clique, core problems, Difficulty 7, reductions, Vertex Cover