-
Recent Posts
- Maximum Likelihood Ranking October 27, 2023
- Randomization Test For Matched Pairs October 13, 2023
- Clustering September 29, 2023
- Shapley-Shubik Voting Power September 15, 2023
- Decoding of Linear Codes September 1, 2023
Recent Comments
Archives
- October 2023
- September 2023
- August 2023
- March 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- June 2022
- May 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- May 2021
- April 2021
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- April 2019
- March 2019
- February 2019
- January 2019
- December 2018
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- June 2018
- May 2018
- April 2018
- March 2018
- February 2018
- January 2018
- December 2017
- November 2017
- October 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- January 2016
- December 2015
- November 2015
- October 2015
- September 2015
- August 2015
- July 2015
- June 2015
- May 2015
- April 2015
- March 2015
- February 2015
- January 2015
- December 2014
- November 2014
- October 2014
- September 2014
- August 2014
- July 2014
- June 2014
Categories
- Algebra and Number Theory
- Appendix- Algebra and Number Theory
- Appendix- Automata and Language Theory
- Appendix- Games and Puzzles
- Appendix- Mathematical Programming
- Appendix- Network Design
- Appendix- Program Optimization
- Appendix- Sets and Partitions
- Appendix-Graph Theory
- Appendix-Logic
- Appendix: Miscellaneous
- Appendix: Sequencing and Scheduling
- Appendix: Storage and Retrieval
- Chapter 3 Exercises
- Core Problems
- Overview
- Problems not in appendix
- Uncategorized
Tag Archives: Independent Set
Protected: Integral Flow With Bundles
Enter your password to view comments.
Posted in Appendix- Network Design
Tagged Difficulty 4, Independent Set, Integer Flow With Bundles, ND36
Protected: Threshold Number
Enter your password to view comments.
Posted in Appendix-Graph Theory
Tagged Difficulty 8, Independent Set, Threshold Number
Protected: Induced Path
Enter your password to view comments.
Posted in Appendix-Graph Theory
Tagged Difficulty 7, GT23, Independent Set, Induced Path, Induced Subgraph With Property Pi
Protected: Induced Subgraph with Property π, Induced Connected Subgraph with Property π
Enter your password to view comments.
Posted in Appendix-Graph Theory
Tagged 3-sat, Clique, Difficulty 10, GT21, GT22, Independent Set, Induced Subgraph With Property Pi, Vertex Cover
Protected: Achromatic Number
Enter your password to view comments.
Posted in Appendix-Graph Theory
Tagged Difficulty 10, GT5, Independent Set, Minimum Maximal Matching, reductions
Independent Set
The last of the three similar graph problems, it’s also probably the easiest reduction. When I teach NP-Completeness, I’ve had a lot of success starting with this reduction (instead of building a stable of NP-Complete problems from zero like the textbooks do). You kind of have to say “Trust me, Vertex Cover is NP-Complete, I’ll show you why later”, but starting with a simple reduction means that they can follow the idea and the process right from the beginning without having to be bogged down in ugly conversions involving SAT.
The problem: Independent Set (IS)
The definition Given a graph G=(V,E) and an integer J. Does G have a collection of at least J vertices where no edges connect any two vertices in J?
Example: Using the same graph:
{a,h,k} is an independent set of size 3.
The reduction: From VC. Use the exact same graph, and set J=|V|-K. (G has an independent set of J vertices exactly when it has a vertex cover of K vertices. Vertices not in the cover can’t have edges between them).
Difficulty: 1. There’s a reason why I do this first (though sometimes I go from Clique instead). In general, though, I try to avoid making them do problems that are too easy for homeworks and tests. If the reduction is trivial, it makes showing that the conversion solves the original problem difficult. You get a lot of proofs that basically say “C’mon! They’re the same thing!”. Which is not what I’m looking for 🙂
Posted in Core Problems
Tagged core problems, Difficulty 1, Independent Set, Reduction, Vertex Cover